

AN-027 OPS243-A Large Rolling Buffer 1 OmniPreSense Corporation

AN-027 OPS243-A Rolling Buffer

In many applications there are fast, singular events for which data needs to be captured and processed

by different means than the standard radar processing. A very fast example of this is capturing the muzzle

velocity of a bullet (2,000 ft/s or 610 m/s). Another is capturing the speed of a bat hitting a baseball which

may have an exit velocity of over 100mph.

These events can take as little as 10ms for the object of interest to leave the sensors field of view or

detection range. However, the standard radar signal processing flow consists of data capture, processing,

and outputting which when pushed to its fastest can take 5-20ms. To help capture these fast events, a

new mode is implemented in the API for the OPS243-A called a rolling buffer. In this mode, the sensor is

constantly capturing data but not processing it. Based on a trigger signal, the sensor will complete the

data capture and output it for further processing. The new feature allows defining how much of the data

captured comes from before or after the trigger event.

Table 1. Sample Time vs. Sample Rate and Max Detectable Speed

Sampling
Rate

Sampling
Time (ms)

Max Detectable
Speed (m/s)

Max Detectable
Speed (mph)

Notes

5ksps 819.2 15.5 34.7

10ksps 409.6 31.1 69.5 Default API setting

20ksps 204.8 62.1 139.0 Vehicle, baseball setting

30ksps 136.5 93.2 208.5 Golf ball setting

50ksps 81.9 155.3 347.5

100ksps 41.0 310.7 694.9

250ksps 16.4 776.7 1737.4 Bullet muzzle velocity setting

500ksps 8.2 1,553.3 3474.7 Bullet muzzle velocity setting

Rolling Buffer Operation

The rolling buffer is implemented as a special mode in the API for the OPS243-A. In normal operation,

OPS243-A performs a sequence of data capture, signal processing, and data output as shown on the left

side of Figure 1. When enabling the rolling buffer, the sensor loops in data capture mode until a trigger

signal is provided, after which it completes the data capture, and then moves to data output. Signal

processing is done off sensor by the customer implementation with reference Python code provided on

the OmniPreSense GitHub site.

https://github.com/omnipresense/

AN-027 OPS243-A Large Rolling Buffer 2 OmniPreSense Corporation

Figure 1. Radar Signal Processing

The rolling buffer is enabled using the G1 command. Upon enabling, no further speed data is output and

the sensor loops within the data sampling. The rolling buffer is captured at a fixed size of 4096 samples.

As seen in Figure 3, the buffer is organized into 32 segments of 128 samples. These segments provide

break points at which the trigger signal is captured and determine how much data captured is from before

and after the trigger signal.

Figure 2. Rolling Buffer Architecture

The trigger signal can be sent via either an API command S! or via a 3.3V signal on pin 3 (HOST_INT) of the

10-pin header J3. The trigger signal is a low to high signal with edge detection used. An API command

S#n with n being 0-32 determines how many prior data samples are included in the final data output. The

default setting is n = 8 with 25% of the data (8 segments x 128 = 1024 samples) output being prior sampled

data and 75% of the data being newly sampled data. Setting n = 0 outputs no historical samples and only

new samples while n = 32 uses only the current samples captured.

AN-027 OPS243-A Large Rolling Buffer 3 OmniPreSense Corporation

Upon completing data sampling, the data is output as a large array of I & Q data along with two

timestamps and pauses in Idle mode. The first timestamp is the time of the start of the samples and the

second is the time of the trigger signal. A follow-on G1 or PA command puts the sensor back into active

rolling buffer mode for the next data capture. To get out of the rolling buffer mode, use the G0 command.

API Command Summary

• G1 – enter rolling buffer mode, restart new rolling buffer sampling output

• G0 – normal radar signal processing

• S! – API enabled trigger signal

• S#n – set trigger signal old/new sample split, 0 ≤ n ≤ 32

• PA – enable new rolling buffer sampling after G1 has been set

Trigger Signal

As noted, there are two methods to trigger the sample data capture and output, a software or hardware

trigger. The software trigger is a simple command from the processor board to the sensor, S!.

Hardware trigger signals are input on pin 3 of the 10-pin header J3. The signal level is 3.3V and the sensor

requires a low to high transition to detect a trigger. Hardware which may be used for trigger signals

includes a button press, a microphone, or an IR break beam sensor. Figure 3 provides the connection

diagram for an SEN-14262 microphone from Sparkfun. The microphone Gate signal is connected to pin 3

of the OPS243-A, providing the trigger signal. When a loud sound such as a gunshot is heard, the Gate

signal provides a low to high transition.

Note, sound is relatively slow for the speeds being detected and the trigger signal timing should be

adjusted accordingly. If the microphone/OPS243-A were 2m/6.6 ft. from the sound source, the sound will

take ~6.6ms to travel to the sensor and trigger the data capture. If sampling at 250ksps, the 128 sample

segment takes 0.5ms to capture. For gunshots, the bullet would already be 0.4m away when the sound

reaches the sensor. If the goal is to have some speed data from before the event, say 2ms, adjust the

trigger signal to allow for this time and the sound delay. In this case, a total of 8.6ms ahead of the true

sound event which is equivalent to ~18 sets of 128 samples. For this example, set S#18 to adjust for this

time.

https://www.sparkfun.com/sparkfun-sound-detector-with-headers.html

AN-027 OPS243-A Large Rolling Buffer 4 OmniPreSense Corporation

Figure 3. Hardware Microphone Trigger Signal

Python Reference Rolling Buffer and Post Processing Code

Once data is captured the customer can implement their own signal processing methods dependent on

their application. Reference Python code is available which enables the rolling buffer mode, sets the

trigger, reads out the data, performs signal processing/FFT, and provides final summary output data along

with a plot of the data. The Python code flow is shown in Figure 4.

AN-027 OPS243-A Large Rolling Buffer 5 OmniPreSense Corporation

Figure 4. Reference Python Code Architecture

The code does an initial check of the sensor configuration to capture relevant settings such as sample rate.

It then sets the sensor into the rolling buffer mode and awaits a trigger signal. The trigger is provided by

entering the command Trig upon which the data is captured, processed, and output.

The detailed flow of the post processing is shown in Figure 5. The pre-FFT signal processing includes level

shifting the data, converting to voltage levels, and applying a Hann Window function individually on the I

& Q sample arrays. The I & Q sample arrays are then combined into a new array of complex value, ready

to run through the FFT.

Typically, it’s advantageous to have many speed reports to understand how the object is moving. Instead

of doing a single 4096 FFT, the Python code takes 128 samples at a time to process through the FFT,

providing a final output of 32 speed reports over the sample time. To increase speed resolution, the 128-

sample arrays are processed with an FFT size of 4096. The results of the FFT are converted scanned for

the top 5 magnitudes with these converted to speed values and output. A final step in the Python code

plots the results of the speeds calculated over time (Figure 6).

AN-027 OPS243-A Large Rolling Buffer 6 OmniPreSense Corporation

Figure 5. Python Code Post Processing

AN-027 OPS243-A Large Rolling Buffer 7 OmniPreSense Corporation

Example Python Rolling Buffer Results

An example output from the Python code is listed in Appendix A. Basic information about the sensor

configuration and processing is provided along with the speed results from each set of 128 samples

processed.

Figure 6. Python Code Speed Data Plot (1024 Hz Tuning Fork or 6.3 m/s)

AN-027 OPS243-A Large Rolling Buffer 8 OmniPreSense Corporation

Appendix A: Example Python Code Output

The results from the Python code are shown below from a 1,024 Hz tuning fork.

INFO: Triggering data capture...

INFO: 1st Sample Time: 2059.659

INFO: Trigger time: 2059.761

INFO: Processing 32 blocks of data, trigger_time=2059.761

{"Time": 2059.659, "Block": 0, "Magnitude": [46], "Speeds": [-6.44]}

{"Time": 2059.672, "Block": 1, "Magnitude": [60], "Speeds": [-6.44]}

{"Time": 2059.685, "Block": 2, "Magnitude": [62], "Speeds": [6.44]}

{"Time": 2059.697, "Block": 3, "Magnitude": [59], "Speeds": [6.44]}

{"Time": 2059.71, "Block": 4, "Magnitude": [47], "Speeds": [-6.43]}

{"Time": 2059.723, "Block": 5, "Magnitude": [39], "Speeds": [6.41]}

{"Time": 2059.736, "Block": 6, "Magnitude": [40], "Speeds": [-6.44]}

{"Time": 2059.749, "Block": 7, "Magnitude": [47], "Speeds": [6.46]}

{"Time": 2059.761, "Block": 8, "Magnitude": [48], "Speeds": [-6.44]}

{"Time": 2059.774, "Block": 9, "Magnitude": [45], "Speeds": [-6.44]}

{"Time": 2059.787, "Block": 10, "Magnitude": [44], "Speeds": [6.44]}

{"Time": 2059.8, "Block": 11, "Magnitude": [43], "Speeds": [6.44]}

{"Time": 2059.813, "Block": 12, "Magnitude": [43], "Speeds": [6.44]}

{"Time": 2059.825, "Block": 13, "Magnitude": [43], "Speeds": [-6.44]}

{"Time": 2059.838, "Block": 14, "Magnitude": [45], "Speeds": [6.44]}

{"Time": 2059.851, "Block": 15, "Magnitude": [44], "Speeds": [-6.44]}

{"Time": 2059.864, "Block": 16, "Magnitude": [41], "Speeds": [6.44]}

{"Time": 2059.877, "Block": 17, "Magnitude": [39], "Speeds": [-6.44]}

{"Time": 2059.889, "Block": 18, "Magnitude": [39], "Speeds": [-6.44]}

{"Time": 2059.902, "Block": 19, "Magnitude": [43], "Speeds": [-6.44]}

{"Time": 2059.915, "Block": 20, "Magnitude": [45], "Speeds": [-6.44]}

{"Time": 2059.928, "Block": 21, "Magnitude": [45], "Speeds": [-6.44]}

{"Time": 2059.941, "Block": 22, "Magnitude": [46], "Speeds": [-6.44]}

{"Time": 2059.953, "Block": 23, "Magnitude": [46], "Speeds": [-6.44]}

{"Time": 2059.966, "Block": 24, "Magnitude": [43], "Speeds": [-6.46]}

{"Time": 2059.979, "Block": 25, "Magnitude": [36], "Speeds": [6.46]}

{"Time": 2059.992, "Block": 26, "Magnitude": [34], "Speeds": [6.46]}

{"Time": 2060.005, "Block": 27, "Magnitude": [38], "Speeds": [6.46]}

{"Time": 2060.017, "Block": 28, "Magnitude": [42], "Speeds": [6.44]}

{"Time": 2060.03, "Block": 29, "Magnitude": [41], "Speeds": [6.46]}

{"Time": 2060.043, "Block": 30, "Magnitude": [41], "Speeds": [6.46]}

{"Time": 2060.056, "Block": 31, "Magnitude": [41], "Speeds": [-6.46]}

INFO: Processing complete: 32 blocks with detections

INFO: Plot saved as: radar_plot_20250615_152730.png

INFO: Ready for next command...

Enter command:

AN-027 OPS243-A Large Rolling Buffer 9 OmniPreSense Corporation

Revision History

Version Date Description

A June 15, 2025 Initial release.

